Gaussian Process Regression Plus Method for Localization Reliability Improvement
نویسندگان
چکیده
منابع مشابه
Gaussian Process Regression Plus Method for Localization Reliability Improvement
Location data are among the most widely used context data in context-aware and ubiquitous computing applications. Many systems with distinct deployment costs and positioning accuracies have been developed over the past decade for indoor positioning. The most useful method is focused on the received signal strength and provides a set of signal transmission access points. However, compiling a man...
متن کاملDistributed Gaussian Process Regression Under Localization Uncertainty
In this paper, we propose distributed Gaussian process regression for resource-constrained distributed sensor networks under localization uncertainty. The proposed distributed algorithm, which combines Jacobi over-relaxation and discrete-time average consensus, can effectively handle localization uncertainty as well as limited communication and computation capabilities of distributed sensor net...
متن کاملBagging for Gaussian process regression
This paper proposes the application of bagging to obtain more robust and accurate predictions using Gaussian process regression models. The training data is re-sampled using the bootstrap method to form several training sets, from which multiple Gaussian process models are developed and combined through weighting to provide predictions. A number of weighting methods for model combination are di...
متن کاملHierarchical Gaussian Process Regression
We address an approximation method for Gaussian process (GP) regression, where we approximate covariance by a block matrix such that diagonal blocks are calculated exactly while off-diagonal blocks are approximated. Partitioning input data points, we present a two-layer hierarchical model for GP regression, where prototypes of clusters in the upper layer are involved for coarse modeling by a GP...
متن کاملLatent Gaussian Process Regression
We introduce Latent Gaussian Process Regression which is a latent variable extension allowing modelling of non-stationary processes using stationary GP priors. The approach is built on extending the input space of a regression problem with a latent variable that is used to modulate the covariance function over the input space. We show how our approach can be used to model non-stationary process...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2016
ISSN: 1424-8220
DOI: 10.3390/s16081193